Showing posts with label IJSRD. Show all posts
Showing posts with label IJSRD. Show all posts

Wednesday, 10 April 2019

Thursday, 24 September 2015

National Conference on "Student-driven Research for Inspired Learning" in Science and Technology : #IJSRD

NCIL – 2015 : IJSRD Publication Partner

National Conference on "Student-driven Research for Inspired Learning" in Science and Technology
Publication Partner International Journal for scientific research & Development (IJSRD)
Date: 16-17 October 2015
NCIL - 2015

Objective

We are pleased to announce the 2nd National Conference on “Student-driven Research for Inspired Learning” (NCIL 2015) in Science and Technology on 16 - 17 October 2015 being organized by Embedded Systems and Robotics Centre (ESRC) and Department of Electronics, Maharaja Agrasen College, University of Delhi.
The primary objective of this conference is to provide a forum to share the wide and varied practices and initiatives of the student driven and institutionally-supported research at the undergraduate/ postgraduate level which leads to the combination of factors necessary for pedagogical effectiveness, enhanced learning outcomes, research productivity, promote networking and stimulate discussion.
The spot light of the conference shall vary widely from broad research to technical skills with focus on group research where students are exposed to open-ended problems, but in a more structured and less resource intensive way than one-on-one mentoring typical of research experience for undergraduate/ postgraduate programs.

Call for Papers

We invite Educators, Scholars and Students to contribute to the conference with papers/posters that address themes mentioned above. Faculty members / Students interested to attend the conference may register by filling registration form attached below latest by 10th September 2015. Early submissions are welcome. The papers received will be reviewed by a panel of experts and the authors of the selected papers will be informed accordingly.
All papers presented in the conference shall be published in Special edition of International Journal  for Scientific Research & Development (ISSN No (online). 2321-0613. Impact Factor: 2.39)

Publication Partner

IJSRDInternational Journal  for Scientific Research & Development
Website: ijsrd.com

Wednesday, 16 September 2015

Manufacturing Techniques of Fibreglass Reinforced Composites

IJSRD found Good research work on Mechanical research area.

Abstract— Combining a high strength fibre with a polymeric matrix produces a composite material with higher stiffness and strength. There are many techniques to produce composite materials, among which few techniques are discussed here based on its process, capabilities and application of composite parts. Among which hand lay-up, vacuum infusion, resin transfer molding and sheet molding compound are widely used. The prepreg is widely used for manufacturing composite parts.

Key words: Fibreglass Cloth, Fibre Reinforced Composites, Prepreg, Vacuum Infusion, Sheet Molding Compound

Introduction

The global nature of today’s reinforced plastics industry creates a demand from all over the world. To produce a composite item, two basic components are required, these being a synthetic resin and a strong fibre [1]. The resin, which can be in the form of a polyester, epoxy or vinyl ester, is normally supplied as a viscous liquid, which sets to a hard solid when suitably activated [1]. The fibre may be glass, carbon, or a combination of some or all of these. What makes composites unique is the fact that the material of construction and the end product are produced simultaneously. Using a suitable mould, layers of fibre are impregnated with activated resin until the required thickness is achieved [1]. After completion, the mould is removed, which further can be used to produce more no. of identical items. These products are FRP cylinders, FRP sheets, FRP components for Transformers, and switchgears products. In the manufacturing of the Fibreglass epoxy sheets are more difficult tasks as it has many intermediate processes to manufactured sheets. The sheets are the combination of the fibreglass cloth and resin matrix that bond with the fibreglass cloth to make highly strength composites. Glass fibres fall into two categories: low-cost general-purpose fibres and premium special-purpose fibres. Over 90 % of all glass fibres are general- purpose products. These fibres are known by the designation E-glass. The remaining glass fibres are premium special-purpose products [2]. Specialpurpose fibres, which are of commercial significance in the market today, include glass fibres with high corrosion resistance (ECR-glass), high strength (S-, R-, and T Eglass), with low dielectric constants (D-glass), high-strength fibres, and pure silica or quartz fibres, which can be used at ultrahigh temperatures[2].

Fig. Schematic Illustration of the Vacuum Enhanced Resin Infusion Technology (Verity)

Vacuum Infusion:

The most popular term to describe vacuum infusion processes are Vacuum Assisted Resin Transfer Moulding (VARTM), Vacuum Assisted Resin Infusion Moulding (VARIM) etc, basically the same technology, and describe methods based on the impregnation of dry reinforcement by liquid thermoset resin driven under vacuum, and this technique made to reduce the void content inside the molded composites. With vacuum bag moulding, the bags are used to evacuate the air from laminate and to generate the atmospheric pressure required for compaction over the mold [7]. Infusion processes are plagued by limitations such as lower fibre volume fraction, lack of uniform resin distribution, higher porosity, control on thickness of part, clogging of resin and vacuum feed lines. CSIR-NAL has developed a proprietary infusion process called VERITy (Vacuum Enhanced Resin Infusion Technology), Kundan et al. (2013), to overcome the above limitations. The process is designed in such a way that it is scalable from a laminate level to a complex cocured primary structure like the wing of a transport aircraft. A schematic of the VERITy process is shown in Fig

For More information Click here

http://ijsrdcallforpaper.blogspot.in/

http://www.ijsrd.com

http://www.facebook.com/ijsrd




Tuesday, 18 August 2015

Fuel cell vehicles

Zero-emission cars that run on hydrogen
“Fuel cell” vehicles have been long promised, as they potentially offer several major advantages over electric and hydrocarbon-powered vehicles. However, the technology has only now begun to reach the stage where automotive companies are planning to launch them for consumers. Initial prices are likely to be in the range of $70,000, but should come down significantly as volumes increase within the next couple of years.
Unlike batteries, which must be charged from an external source, fuel cells generate electricity directly, using fuels such as hydrogen or natural gas. In practice, fuel cells and batteries are combined, with the fuel cell generating electricity and the batteries storing this energy until demanded by the motors that drive the vehicle. Fuel cell vehicles are therefore hybrids, and will likely also deploy regenerative braking – a key capability for maximizing efficiency and range.
Unlike battery-powered electric vehicles, fuel cell vehicles behave as any conventionally fuelled vehicle. With a long cruising range – up to 650 km per tank (the fuel is usually compressed hydrogen gas) – a hydrogen fuel refill only takes about three minutes. Hydrogen is clean-burning, producing only water vapour as waste, so fuel cell vehicles burning hydrogen will be zero-emission, an important factor given the need to reduce air pollution.
There are a number of ways to produce hydrogen without generating carbon emissions. Most obviously, renewable sources of electricity from wind and solar sources can be used to electrolyse water – though the overall energy efficiency of this process is likely to be quite low. Hydrogen can also be split from water in high-temperature nuclear reactors or generated from fossil fuels such as coal or natural gas, with the resulting CO2 captured and sequestered rather than released into the atmosphere.
As well as the production of cheap hydrogen on a large scale, a significant challenge is the lack of a hydrogen distribution infrastructure that would be needed to parallel and eventually replace petrol and diesel filling stations. Long distance transport of hydrogen, even in a compressed state, is not considered economically feasible today. However, innovative hydrogen storage techniques, such as organic liquid carriers that do not require high-pressure storage, will soon lower the cost of long-distance transport and ease the risks associated with gas storage and inadvertent release.
Mass-market fuel cell vehicles are an attractive prospect, because they will offer the range and fuelling convenience of today’s diesel and petrol-powered vehicles while providing the benefits of sustainability in personal transportation. Achieving these benefits will, however, require the reliable and economical production of hydrogen from entirely low-carbon sources, and its distribution to a growing fleet of vehicles (expected to number in the many millions within a decade).
                                                     http://goo.gl/yN1Ijg
                                                   https://goo.gl/BxFD7U
                                                   https://goo.gl/Kc6p5M
                                                    http://goo.gl/sIgs2u
                                                  https://goo.gl/iJF19D
                                                  http://goo.gl/R2jy3u
                                                 https://goo.gl/JyrGZE
http://www.ijsrd.com/SubmitManuscript

Wednesday, 5 August 2015

Call for Special Issue of Image Processing # IJSRD

Best 25 papers will be published online.Participate in this special issue and get a chance to win the Best Paper Award for Image Processing. Also other authors will have special prizes to be won.

What is Image Processing?
Image processing is a method to convert an image into digital form and perform some operations on it, in order to get an enhanced image or to extract some useful information from it. It is a type of signal dispensation in which input is image, like video frame or photograph and output may be image or characteristics associated with that image. Usually Image Processingsystem includes treating images as two dimensional signals while applying already set signal processing methods to them. 
It is among rapidly growing technologies today, with its applications in various aspects of a business. Image Processing forms core research area within engineering and computer science disciplines too.Image processing usually refers to digital image processing, but optical and analog image processing also are possible.
Analog or visual techniques of image processing can be used for the hard copies like printouts and photographs. Image analysts use various fundamentals of interpretation while using these visual techniques. The image processing is not just confined to area that has to be studied but on knowledge of analyst. Association is another important tool in image processing through visual techniques. So analysts apply a combination of personal knowledge and collateral data to image processing.
Digital Processing techniques help in manipulation of the digital images by using computers. As raw data from imaging sensors from satellite platform contains deficiencies. To get over such flaws and to get originality of information, it has to undergo various phases of processing. The three general phases that all types of data have to undergo while using digital technique are Pre- processing, enhancement and display, information extraction.
If you have worked on any part of image processing prepare a research paper and submit to us
Image processing basically includes the following three steps.
  • Importing the image with optical scanner or by digital photography.The acquisition of images (producing the input image in the first place) is referred to as imaging.
  • Analyzing and manipulating the image which includes data compression and image enhancement and spotting patterns that are not to human eyes like satellite photographs.
  • Output is the last stage in which result can be altered image or report that is based on image analysis.

Purpose of Image processing
The purpose of image processing is divided into various groups. They are:
  • Visualization - Observe the objects that are not visible.
  • Image sharpening and restoration - To create a better image.
  • Image retrieval - Seek for the image of interest.
  • Measurement of pattern – Measures various objects in an image.
  • Image Recognition – Distinguish the objects in an image.

Applications of Image processing
Image processing has been an important stream of Research for various fields. Some of the application areas of Image processing are….
Intelligent Transportation Systems – E.g. Automatic Number Plate Recognition, Traffic Sign Recognition
Remote Sensing –E.g.Imaging of earth surfaces using multi Spectral Scanners/Cameras, Techniques to interpret captured images etc.
Object Tracking – E.g. Automated Guided Vehicles, Motion based Tracking, Object Recognition
 Defense surveillance – E.g. Analysis of Spatial Images, Object Distribution Pattern Analysis of Various wings of defense. Earth Imaging using UAV etc.
 Biomedical Imaging & Analysis – E.g. Various Imaging using X- ray, Ultrasound, computer aided tomography (CT) etc. Disease Prediction using acquired images, Digital mammograms.etc.
Automatic Visual Inspection System – E.g.Automatic inspection of incandescent lamp filaments, Automatic surface inspection systems,    Faulty component identification etc.
And many other applications…..
To contribute your research work in Image processing please prepare an article on it and submit to us.

Saturday, 1 November 2014

IIT #Techfest International Student #Conference #IJSRD

conferenceTechfest International Student Conference is an initiative to bring together the student community and professors with a common research background. TISC marks a step further in our endeavor to promote science and technology among the students by facilitating the exchange of knowledge between academia and industry.
Featured imageTechfest International Student Conference presents a unique opportunity for students to present their work in front of fellow students, senior professors from top universities, industrialists and policy-makers. It aims at giving recognition to students for their research at a relatively young age. An enriching experience to research oriented minds, TISC will give young scientists an insight into the topic, learn new ideas and build networks beneficial for the future.
The theme for the conference is Renewable Energy Systems, potentially the most important aspect of human life in forthcoming decades. TISC is being hosted by IIT Bombay, one of the premier institutes of science and technology in India known for its path-breaking research and quality education.

Tuesday, 7 October 2014

A Glimpse into the 3-D brain | #IJSRD

People who wish to know how memory works are forced to take a glimpse into the brain. They can now do so without bloodshed: Ruhr Univ. Bochum (RUB) researchers have developed a new method for creating 3-D models of memory-relevant brain structures. They published their results in the trade journal Frontiers in Neuroanatomy.
3-D image of the hippocampus of a rat. Image
Lets Research !!! DO IT >>>> IJSRD
Information become memories
In future, this method may help us understand how animals, for example, combine various information to form memories within the hippocampus, in order to memorise food sources or dangers and to remember them in certain situations.
main source: click here
For more information: Click here. . .

Tuesday, 19 August 2014

#IJSRD Digital Watermarking Methods in Spatial Domain and Transform Domain

#IJSRD
Digital Watermarking Methods in  Spatial Domain and Transform Domain
Abstract--- The ease of digital media modification and dissemination necessitates content protection beyond encryption. Information hidden as digital watermarks in multimedia i.e. text, image, video, audio enables protection mechanism in decrypted contents. In a way that protects from attacks several common image processing techniques are used in Spatial Domain and Transform Domain. In Spatial Domain Least Significant Bit(LSB) is used and in Transform domain Discrete Cosine Transform(DCT) & Discrete Wavelet Transform(DWT) are used. Among these DWT is best method due because of using embedded zero tree wavelet image compression scheme and high frequency sub bands.  

For More Details 
Click on Below Links :



Friday, 15 August 2014

#IJSRD advanced persistent threat (APT)


Advanced Persistent Threats (APTs) are a cybercrime category directed at business and political targets. APTs require a high degree of stealithiness over a prolonged duration of operation in order to be successful. The attack objectives therefore typically extend beyond immediate financial gain, and compromised systems continue to be of service even after key systems have been breached and initial goals reached.
Useful website for Engineering (Diploma,BCA,MCA,B.E/M.E/Ph.D) Students....
kindly share to all engineers...
Visit us on www.ijsrd.com

#IJSRD MOBILE PROTECTION VICTIMISATION VOICE VERIFICATION


Cellular communication business has developed leaps and bounds to become the core of day to day science. Mobile phones is that the spirit of cellular business. the quantity of mobile phones users is rising exponentially. however the privacy of user and security of mobile phones leftovers a difficult question. Theft of mobile phones has become the attention catching business for offender. There ought to be a reliable methodology of protective the instrument from thief. My paper proposes a brand new innovative, reliable, trick proof precautions for mobile phones victimization VOICE VERIFICATION. Voice verification is that the identification of a personal identity victimization speech because the spotting quality. The voice of the user is processed employing a digital gesture processor that is that the prime a part of a mobile. we have a tendency to are programming this DSP to implement this safety technique. For most a resourceful voice record of the user is formed. This record is hold on within the Flash read-only storage that is out there within the mobile. Then whenever the user speaks through the mobile phones a part of the speech sample is taken and hold on. This processed voice of the user is compared with the first folder to examine the identity of the user. If the user is allowed, he’s allowed to continue his speak. If not the transmission is cut unexpectedly by creating the DSP in inactive state. Therefore the mobile is being shielded from any extralegal user. Not with standing the mobile phones was purloined or lost it won’t be helpful for the other individual. The programmability of DSP and generality of Voice based mostly classification has given our methodology a twin advantage. Our set up demands neither external hardware nor additional price. The on top of methodology cause no hardship for the user not like this safety systems. This methodology may be adopted universally altogether models of Mobile phones and mobile phones for cover.
Useful website for Engineering (Diploma,BCA,MCA,B.E/M.E/Ph.D) Students….
kindly share to all engineers…
Visit us on www.ijsrd.com